Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 354
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 249-257, 2024.
Article in Chinese | WPRIM | ID: wpr-1003787

ABSTRACT

Osteoporosis (OP) is a systemic metabolic bone disease characterized by bone microstructure degeneration and bone mass loss, which has a high prevalence and disability rate. Effective prevention and treatment of OP is a major difficulty in the medical community. The nature of OP is that multiple pathological factors lead to the imbalance of human bone homeostasis maintained by osteoblasts and osteoclasts. Ferroptosis is a non-apoptotic cell death pathway, and its fundamental cause is cell damage caused by iron accumulation and lipid peroxidation. Studies have shown that ferroptosis is involved in and affects the occurrence and development of OP, which leads to OP by mediating the imbalance of bone homeostasis. Ferroptosis is an adjustable form of programmed cell death. The intervention of ferroptosis can regulate the damage degree and death process of osteoblasts and osteoclasts, which is beneficial to maintain bone homeostasis, slow down the development process of OP, improve the clinical symptoms of patients, reduce the risk of disability, and improve their quality of life. However, there are few studies on ferroptosis in OP. Traditional Chinese medicine (TCM) is a medical treasure with unique characteristics and great application value in China. It has been widely used in China and has a long history. It has the multi-target and multi-pathway advantages in the treatment of OP, with high safety, few toxic and side effects, and low treatment cost, and has a significant effect in clinical application. The intervention of TCM in ferroptosis to regulate bone homeostasis may be a new direction for the prevention and treatment of OP in the future. This article summarized the regulatory mechanisms related to ferroptosis, discussed the role of ferroptosis in bone homeostasis, and reviewed the current status and progress of active ingredients in TCM compounds and monomers in the regulation of OP through ferroptosis, so as to provide a theoretical basis for the participation of TCM in the prevention and treatment of OP in the future.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 196-207, 2024.
Article in Chinese | WPRIM | ID: wpr-1003782

ABSTRACT

Ginseng Radix et Rhizoma(GRR) has the function of replenishing vital energy and can lighten the body and prolong the life when taken for a long time, which is suitable for the development of anti-aging products, so this paper intends to sort out the progress of anti-aging research on GRR. After combing, the results of modern studies have shown that a variety of components in GRR have anti-aging effect, which can prolong the lifespan of aging animal models, as well as delay the aging of various systems. The anti-aging mechanisms mainly include anti-cellular senescence, anti-oxidative stress, inhibiting telomere shortening, maintaining mitochondrial homeostasis and so on. The anti-aging ingredients of GRR involved in the researches mainly include ginsenoside Rg1 and ginsenoside Rb1, in addition, ginsenoside Rg3, ginsenoside Rd, ginsenoside Rg2, ginsenoside Re, ginsenoside Rb2, oligosaccharides of GRR, polysaccharides of GRR, water extract of GRR, total saponins of Panax ginseng stems and leaves are also included. Therefore, under current background of population aging, the in-depth development of GRR and its transformation into anti-aging products are of great significance for delaying senility and improving the health conditions of aging population.

3.
Acta neurol. colomb ; 39(2)jun. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1533492

ABSTRACT

Introducción: El sistema glinfático comprende el conjunto de rutas perivasculares tanto arteriales como venosas que se encuentran en estrecha asociación con células astrogliales y que permiten la interacción entre el líquido cefalorraquídeo (LCR) y el líquido intersticial cerebral (LIC), para llevar a cabo procesos como la depuración de los metabolitos de desecho celular, o la distribución de nutrientes, así como contribuir al metabolismo cerebral local, la transmisión de volumen y la señalización paracrina cerebral. Contenidos: Este artículo busca profundizar en los conceptos anatómicos y fisiológicos, hasta el momento descritos, sobre este sistema macroscópico de transporte. Se realiza una búsqueda bibliográfica de revisiones y estudios experimentales sobre la anatomía, la fisiología y las implicaciones fisiopatológicas del sistema glinfático. Conclusiones: La identificación anatómica y funcional del sistema glinfático ha ampliado el conocimiento sobre la regulación del metabolismo cerebral en cuanto a distribución de nutrientes y cascadas de señalización celular. Al establecer una interacción entre el espacio subaracnoideo subyacente y el espacio intersticial cerebral, el sistema glinfático surge como uno de los mecanismos protagonistas de la homeostasis cerebral. La disfunción de esta vía hace parte de los mecanismos fisiopatológicos de múltiples trastornos neurológicos, ya sea por la acumulación de macromoléculas, como ocurre en la enfermedad de Alzheimer, o por la reducción del drenaje de sustancias químicas y citocinas proinflamatorias en patologías como la migraña o el trauma craneoencefálico.


Introduction: The glympathic system comprises the set of perivascular routes, arterials or venous, that are found in close relationship with astroglial cells and allow interaction between the cerebrospinal fluid (CSF) and the interstitial brain fluid (ISF), to carry processes like cell-wasting metabolites depuration, nutrients distribution, as well as make a contribution in the local brain metabolism, volumen transmition and brain paracrine signaling. Contents: This article seeks to deepen in the anatomical and physiological concepts, so far described, about this macroscopic transport system. A bibliographic search of reviews and experimental studies on the anatomy, physiology and pathophysiological implications of the glymphatic system is carried out. Conclusions: Anatomical and functional identification of glympathic system has broaden the knowledge about regulation of brain metabolism on the nutrients distribution and cell signaling cascades. When setting an interaction between the subarachnoid space and the brain interstitial space, the glymphatic system arise as one of the leading mechanisms of brain homeostasis. Disfunction of this pathway makes part of the patophysiological mechanisms of multiple neurological disease, either be by collection of macromolecules as in Alzheimer's disease, or by the reduction of inflammatory cytokines and chemical substances drainage as in migraine or traumatic brain injury (TBI).

4.
Indian J Pediatr ; 2023 Jun; 90(6): 574–581
Article | IMSEAR | ID: sea-223756

ABSTRACT

Nutritional rickets, caused by vitamin D and/or calcium deficiency is by far the most common cause of rickets. In resource-limited settings, it is therefore not uncommon to treat rickets with vitamin D and calcium. If rickets fails to heal and/or if there is a family history of rickets, then refractory rickets should be considered as a differential diagnosis. Chronic low serum phosphate is the pathological hallmark of all forms of rickets as its low concentration in extracellular space leads to the failure of apoptosis of hypertrophic chondrocytes leading to defective mineralisation of the growth plate. Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) control serum phosphate concentration by facilitating the excretion of phosphate in the urine through their action on the proximal renal tubules. An increase in PTH, as seen in nutritional rickets and genetic disorders of vitamin D-dependent rickets (VDDRs), leads to chronic low serum phosphate, causing rickets. Genetic conditions leading to an increase in FGF23 concentration cause chronic low serum phosphate concentration and rickets. Genetic conditions and syndromes associated with proximal renal tubulopathies can also lead to chronic low serum phosphate concentration by excess phosphate leak in urine, causing rickets. In this review, authors discuss an approach to the differential diagnosis and management of refractory rickets

5.
Int. j. morphol ; 41(2): 539-547, abr. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1440313

ABSTRACT

SUMMARY: A great deal of attention of air pollution on respiratory health is increasing, particularly in relation to haze days. It is that exposure to cigarette smoke augments the toxicity of common air contaminants, thereby increasing the complexity of respiratory diseases. Although there are various mechanisms involved to respiratory diseases caused or worsen by cigarette smoking, in which the role of AQPs in the lung with regard to fluid homeostasis still remains elusive. In this paper, we copied the rat models based on smoke generator, and investigated the morphological changes of mucosa and related functions depending on the balance of lining liquid of alveoli via AQPs expression. Compared with normal group, weak labelling of AQP1 and AQP5 protein abundance were clearly detected in the corresponding part of smoke exposure groups compared with normal group. Hence, it is suggested that the contribution of AQPs in the lung is diminished, thereby causing perturbed balancing between resorptive and secretory fluid homeostasis under cigarette smoking.


Cada vez se presta más atención a la contaminación del aire en la salud respiratoria, particularmente, en relación con los días de neblina. En consecuencia la exposición al humo del cigarrillo aumenta la toxicidad de los contaminantes comunes del aire, lo que además aumenta la complejidad de las enfermedades respiratorias. Aunque existen varios mecanismos involucrados en las enfermedades respiratorias causadas o empeoradas por el tabaquismo, en las que el papel de las AQP en el pulmón respecto a la homeostasis de líquidos sigue siendo difícil de alcanzar. En este artículo, copiamos los modelos de rata basados en el generador de humo e investigamos los cambios morfológicos de la mucosa y las funciones relacionadas según el equilibrio del líquido de revestimiento de los alvéolos a través de la expresión de AQP. En comparación con el grupo normal, se detectó claramente un etiquetado débil de la abundancia de proteínas AQP1 y AQP5 en la parte correspondiente de los grupos de exposición al humo en comparación con el grupo control. Por lo tanto, se sugiere que la contribución de las AQP en el pulmón está disminuida, provocando así un equilibrio perturbado entre la homeostasis del líquido secretor y de reabsorción bajo el hábito de fumar cigarrillos.


Subject(s)
Animals , Rats , Respiratory System/pathology , Cigarette Smoking/adverse effects , Respiratory System/drug effects , Body Fluids/metabolism , Immunohistochemistry , Microscopy, Electron , Rats, Sprague-Dawley , Aquaporins/metabolism , Homeostasis , Lung/drug effects , Lung/pathology
6.
Article | IMSEAR | ID: sea-220139

ABSTRACT

Background: In chronic kidney disease (CKD), renal regulatory mechanisms may be insufficient to balance intestinal magnesium absorption hence insufficient to maintain homeostasis. But related data are relatively sparse and not readily available, especially in Bangladesh context. Aim of the study: The aim of the study was to assess the pattern of serum magnesium level in different stages of CKD patients. Material & Methods: This descriptive cross-sectional study was conducted in the Department of Medicine and the Department of Nephrology, Dhaka Medical College Hospital (DMCH) for nine months’ period. Approval for the study was taken from the ethical review committee of DMC before the commencement of the study. Diagnosed patients of chronic kidney disease (CKD) were approached for the inclusion of the study. Informed written consent was taken from each patient. All patients were subjected to detailed history taking, physical examination, and relevant investigations. For the study purpose, serum magnesium was done for all patients. Results: After compiling data from all participants, statistical analysis was performed using the statistical package for social science (SPSS) version 22 for windows, and a p < 0.05 was considered statistically significant. Mean age of the patients was 53 years with male predominance (male 64% vs female 36%). Of all, 6.7% of cases had hypomagnesemia and 55.3% had hypermagnesemia. The mean serum magnesium level was 2.68±0.81 mg/dl. Assessment of serum magnesium in a different stages of CKD showed that hypermagnesemia is associated with higher staging (p<0.05), and there is a negative correlation between lower e-GFR with serum magnesium ((r=-0.753, p<0.01). Conclusion: Nearly two-third of CKD patients were found with altered magnesium level in the form of hypomagnesemia or hypermagnesemia in this study. Serum magnesium was found increased in higher stages of CKD. That means serum magnesium level increases along with higher stage of the disease. Urinary magnesium excretion also decreases when eGFR of patient decreased.

7.
Arch. endocrinol. metab. (Online) ; 67(1): 119-125, Jan.-Feb. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420094

ABSTRACT

ABSTRACT Objectives: To validate the homeostasis model assessment (HOMA) of insulin resistance (IR) as a surrogate to the hyperglycemic clamp to measure IR in both pubertal and postpubertal adolescents, and determine the HOMA-IR cutoff values for detecting IR in both pubertal stages. Subjects and methods: The study sample comprised 80 adolescents of both sexes (aged 10-18 years; 37 pubertal), in which IR was assessed with the HOMA-IR and the hyperglycemic clamp. Results: In the multivariable linear regression analysis, adjusted for sex, age, and waist circumference, the HOMA-IR was independently and negatively associated with the clamp-derived insulin sensitivity index in both pubertal (unstandardized coefficient - B = −0.087, 95% confidence interval [CI] = −0.135 to −0.040) and postpubertal (B = −0.101, 95% CI, −0.145 to −0.058) adolescents. Bland-Altman plots showed agreement between the predicted insulin sensitivity index and measured clamp-derived insulin sensitivity index in both pubertal stages (mean = −0.00 for pubertal and postpubertal); all P > 0.05. The HOMA-IR showed a good discriminatory power for detecting IR with an area under the receiver operator characteristic curve of 0.870 (95% CI, 0.718-0.957) in pubertal and 0.861 (95% CI, 0.721-0.947) in postpubertal adolescents; all P < 0.001. The optimal cutoff values of the HOMA-IR for detecting IR were > 3.22 (sensitivity, 85.7; 95% CI, 57.2-98.2; specificity, 82.6; 95% CI, 61.2-95.0) for pubertal and > 2.91 (sensitivity, 63.6; 95% CI, 30.8-89.1, specificity, 93.7; 95%CI, 79.2-99.2) for postpubertal adolescents. Conclusion: The threshold value of the HOMA-IR for identifying insulin resistance was > 3.22 for pubertal and > 2.91 for postpubertal adolescents.

8.
Braz. j. med. biol. res ; 56: e12212, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420755

ABSTRACT

Diabetes affects every tissue in the body, including the skin. The main skin problem is the increased risk of infections, which can lead to foot ulcers. Most studies evaluating the effects of diabetes on the skin are carried out in wound healing areas. There are fewer studies on uninjured skin, and some particularities of this tissue are yet to be elucidated. In general, cellular and molecular outcomes of diabetes are increased oxidative stress and lipid peroxidation. For our study, we used C57BL/6 mice that were divided into diabetic and non-diabetic groups. The diabetic group received low doses of streptozotocin on 5 consecutive days. To evaluate the effects of hyperglycemia on uninjured skin, we performed morphological analysis using hematoxylin/eosin staining, cellular analysis using Picrosirius red and Nissl staining, and immunostaining, and evaluated protein expression by polymerase chain reaction. We confirmed that mice were hyperglycemic, presenting all features related to this metabolic condition. Hyperglycemia caused a decrease in interleukin 6 (Il-6) and an increase in tumor necrosis factor alpha (Tnf-α), Il-10, F4/80, tumor growth factor beta (Tgf-β), and insulin-like growth factor 1 (Igf-1). In addition, hyperglycemia led to a lower cellular density in the epidermis and dermis, a delay in the maturation of collagen fibers, and a decrease in the number of neurons. Furthermore, we showed a decrease in Bdnf expression and no changes in Ntrk2 expression in the skin of diabetic animals. In conclusion, chronic hyperglycemia in mice induced by streptozotocin caused disruption of homeostasis even before loss of skin continuity.

9.
Chinese Journal of Biotechnology ; (12): 1621-1632, 2023.
Article in Chinese | WPRIM | ID: wpr-981158

ABSTRACT

The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound β-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. β-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that β-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of β-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined β-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.


Subject(s)
Humans , Tigecycline/pharmacology , Escherichia coli/metabolism , Reactive Oxygen Species/therapeutic use , Plasmids , Anti-Bacterial Agents/metabolism , Escherichia coli Infections/microbiology , Bacteria/genetics , Microbial Sensitivity Tests
10.
Braz. j. biol ; 83: e250179, 2023. graf
Article in English | LILACS, VETINDEX | ID: biblio-1339372

ABSTRACT

Abstract Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimer's disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.


Resumo O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis ​​pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.


Subject(s)
Humans , Insulin Resistance , Diabetes Mellitus , Glycogen Synthase Kinase 3 , Glucose , Homeostasis
11.
Acta Pharmaceutica Sinica ; (12): 3366-3378, 2023.
Article in Chinese | WPRIM | ID: wpr-999088

ABSTRACT

Yinchenzhufu decoction (YCZFD) is a classic formula for treating Yin Huang syndrome, which can improve liver injury caused by cholestasis. However, the mechanism of action of YCZFD still remains unclear. This article used network pharmacology, molecular docking, animal experiments, and molecular biology methods to explore the mechanism of YCZFD in treating liver injury caused by cholestasis. A mouse model of acute cholestasis induced by lithocholic acid was used to investigate the effects of YCZFD on liver injury. The experimental procedures described in this paper were reviewed and approved by the Ethical Committee at the Shanghai University of Traditional Chinese Medicine (approval NO. PZSHUTCM190823002). The results showed that YCZFD could reduce the levels of blood biochemical indicators and improve hepatocyte damage of cholestatic mice. Then, multiple databases were used to predict the corresponding targets of YCZFD active components on cholestatic liver injury. An intersection target protein-protein interaction (PPI) networks based on String database and Cytoscape software was used to demonstrate the possible core targets of YCZFD against cholestatic liver injury. The results indicated that core targets of YCZFD include tumor necrosis factor, interleukin-1β, non-receptor tyrosine kinase Src, interleukin-6, etc. GO (gene ontology) and KEGG (kyoto encyclopedia of genes and genomes) enrichment analysis indicated that YCZFD may regulate the tumor necrosis factor signaling pathway, nuclear factor-κB signaling pathway, bile secretion, and other related factors to ameliorate the cholestatic liver injury. AutoDockTools software was used to perform molecular docking verification on the core targets and components of YCZFD. To verify the results of network pharmacology, UPLC-MS/MS method was used to determine the effect of YCZFD on levels of bile acid profiles in mouse liver tissues. It was found that treatment with YCZFD significantly reduced the content of free bile acids, taurine bound bile acids, and total bile acids in the liver tissues of cholestatic mice. Then, results from real time PCR and Western blot also found that YCZFD can upregulate the expression of hepatic nuclear receptor farnesoid X receptor, metabolizing enzyme (UDP glucuronidase transferase 1a1), and efflux transporters (bile salt export pump, multidrug resistance-associated protein 2, multidrug resistance-associated protein 3, etc) in cholestasis mice, promote bile acid metabolism and excretion, and improve bile acid homeostasis. Moreover, YCZFD can also inhibit pyroptosis and inflammation by regulating NOD-like receptors 3 pathway, thereby inhibiting cholestatic liver injury.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 204-212, 2023.
Article in Chinese | WPRIM | ID: wpr-996522

ABSTRACT

Osteoporosis (OP) is a systemic metabolic bone disease caused by various factors, with a high incidence, and its pathogenesis is not yet clear. There is no specific drug for prevention and treatment, making it a significant global public health issue. In recent years, research has found that autophagy plays a role in the development of OP, and intervention in autophagy has become a hot topic in OP treatment. With further research, there has been a gradual increase in studies related to autophagy regulation by traditional Chinese medicine (TCM) to treat OP, and the treatment efficacy has been recognized. However, there is still a lack of systematic reviews on the mechanisms of autophagy in OP and the specific targets of TCM intervention in autophagy for OP treatment. Therefore, this article systematically reviewed the impact of autophagy on bone marrow mesenchymal stem cells (BMSCs), osteoblasts, osteoclasts, and bone cells in the development of OP, as well as studies on TCM intervention in cell autophagy for OP treatment, aiming to provide a theoretical reference for the treatment of OP and further research in this field.

13.
Chinese Journal of Endocrinology and Metabolism ; (12): 48-54, 2023.
Article in Chinese | WPRIM | ID: wpr-994296

ABSTRACT

Objective:To investigate the effect of autophagy related gene Atg101 on white adipocyte senescence.Methods:An Atg101 knockdown model of 3T3-L1 mature adipocytes was constructed to probe the effect of Atg101 on autophagy-related proteins LC3 and p62 protein. The RNA-seq database of human subcutaneous adipose tissue was constructed and analyzed, and the co-expressed gene set was predicted based on the pearson correlation coefficient( R2>0.4, P<0.05) between FPKM values of Atg101 and other gene, followed by KEGG and Reactome enrichment analysis. Young mouse(8 weeks old) and old mouse(18 months old) models were established, and the expression levels of Atg101 in inguinal white adipose tissue and epididymal white adipose tissue were detected by quantitative real-time PCR(RT-qPCR) and Western blot. Furthermore, the differences in white adipocyte senescence-associated secretory phenotype(SASP), cell cycle and mitochondrial homeostasis-related genes were detected by RNA-seq, Western blot, and RT-qPCR to analyze the effects of Atg101 silencing on adipocyte senescence. Results:The autophagy-related protein LC3-Ⅱ expression was significantly decreased and p62 protein was induced after Atg101 was knockdowned in 3T3-L1 adipocytes, suggesting impaired cell autophagy. KEGG enrichment analysis revealed that Atg101 co-expressed gene set was mainly enriched in autophagy and senescence-related pathways; Reactome enrichment analysis revealed that this gene set was associated with multiple cell cycle signaling pathways. RT-qPCR and Western blot confirmed that both mRNA and protein levels of Atg101 were down-regulated in inguinal white adipose tissue of aging mice, and protein levels in epididymal white adipose tissue were also significantly reduced. Finally, it was further confirmed that SASP-related genes were induced after Atg101 knockdown in white adipocytes, and cell cycle-specific gene expression was restricted and cytokine-dependent protein kinase inhibitors p16 and p21 expressions were significantly increased, while mitochondrial homeostasis regulatory genes were also suppressed.Conclusions:Knockdown of Atg101 may regulate white adipocyte senescence by inhibiting autophagic activity, presenting impaired mitochondrial homeostasis.

14.
Chinese Journal of Anesthesiology ; (12): 350-353, 2023.
Article in Chinese | WPRIM | ID: wpr-994199

ABSTRACT

Objective:To investigate the effect of electroacupuncture on calcium homeostasis in hippocampal neurons of mice with sepsis-associated encephalopathy (SAE).Methods:Twenty-four healthy male C57BL/6J mice, weighing 18-22 g, were divided into 4 groups ( n=6 each) using a random number table method: sham operation group (Sham group), SAE group, SAE plus electroacupuncture group (SAE+ EA group), and SAE plus sham electroacupuncture group (SAE+ SEA group). The virus carrying calcium ion (Ca 2+ ) fluorescent probes was injected and then an optical fiber was implanted into the hippocampal CA1 area to record the fluorescence signals of Ca 2+ . SAE was induced by cecal ligation and puncture in anesthetized mice at 3 weeks after administration. Starting from 3 days before surgery, Baihui and bilateral Quchi and bilateral Zusanli acupoints were stimulated for 30 min per day for 7 consecutive days in SAE+ EA group. In SAE+ SEA group, electroacupuncture was performed at the points 0.2 mm lateral to the corresponding acupoints without electrical stimulation. Open field tests were conducted at 5 days after surgery to record the number of rearing and changes in related Ca 2+ signals in hippocampal CA1 neurons. Novel object recognition tests were conducted at 6-7 days after surgery to record the recognition time and changes in related Ca 2+ signals in hippocampal CA1 neurons. Mice were sacrificed after the end of behavioral testing on 7 days after surgery, and brain tissues ipsilateral to the optical fiber implant were obtained and the fluorescence intensity of Ca 2+ in the hippocampal CA1 neurons was acquired using a fluorescent microscope. Results:Compared with Sham group, the number of rearing and amplitudes of related Ca 2+ signals in hippocampal CA1 neurons while rearing were significantly decreased in SAE group and SAE+ SEA group ( P<0.05), and no statistically significant changes were found in the parameters mentioned above in SAE+ EA group ( P>0.05), and the recognition index and amplitudes of related Ca 2+ signals while recognizing were significantly deceased, and the fluorescence intensity of Ca 2+ in hippocampal CA1 neurons was increased in SAE, SAE+ EA and SAE+ SEA groups ( P<0.05). Compared with SAE group and SAE+ SEA group, the number of rearing and amplitudes of related Ca 2+ signals in hippocampal CA1 neurons while rearing were significantly increased, the recognition index and amplitudes of related Ca 2+ signals in hippocampal CA1 neurons while recognizing were increased, and the fluorescence intensity of Ca 2+ in hippocampal CA1 neurons was decreased in SAE+ EA group ( P<0.05). There were no statistically significant differences in the parameters mentioned above between SAE group and SAE+ SEA group ( P>0.05). Conclusions:The mechanism by which electroacupuncture alleviates SAE may be related to regulation of Ca 2+ homeostasis in hippocampal neurons of mice.

15.
Braz. j. biol ; 83: 1-5, 2023. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1468930

ABSTRACT

Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimer’s disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.


O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.


Subject(s)
Humans , Diabetes Mellitus/enzymology , Fluoroquinolones/analysis , /analysis
16.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469146

ABSTRACT

Abstract Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimers disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.


Resumo O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 198-208, 2023.
Article in Chinese | WPRIM | ID: wpr-980190

ABSTRACT

Cardiovascular diseases are a class of circulatory system diseases involving the heart and vessels, including arrhythmia, hypertension, coronary heart disease, myocardial infarction, heart failure and so on. Due to the complicated pathogenesis, diverse disease types, and difficult treatment, cardiovascular diseases pose serious threatens to the human health. Therefore, it is urgent to develop effective therapies. Ferroptosis, a new type of cell death different from autophagy and apoptosis, is iron-dependent and accompanied by lipid peroxide accumulation. The mechanism of ferroptosis is complex. Recent studies have shown that iron homeostasis plays a role in the occurrence of ferroptosis, which may be induced by iron intake, utilization, and output and iron-related protein synthesis. In addition, iron homeostasis and ferroptosis have been confirmed to be involved in the pathological process of cardiovascular diseases, so regulating iron homeostasis and ferroptosis in cardiomyocytes may be a focus of the future research on cardiovascular diseases. Traditional Chinese medicine (TCM) provides a unique treatment method, and the unique syndrome differentiation system and treatment methods have been widely used in the clinical diagnosis, prevention, and treatment of cardiovascular diseases. Studies have demonstrated that TCM compound prescriptions and the active components in Chinese medicinal materials can regulate iron homeostasis and ferroptosis to protect cardiomyocytes. This paper introduces the mechanism of iron homeostasis in regulating ferroptosis and summarizes the effects of iron homeostasis-mediated ferroptosis on cardiovascular diseases. Furthermore, the research progress of TCM in regulating iron homeostasis-mediated ferroptosis in cardiovascular diseases is reviewed to provide new ideas for TCM prevention and treatment of cardiovascular diseases.

18.
Organ Transplantation ; (6): 327-2023.
Article in Chinese | WPRIM | ID: wpr-972921

ABSTRACT

Chronic graft-versus-host disease (cGVHD) is the main complication after allogeneic hematopoietic stem cell transplantation, which is also the major cause of non-relapse -related death. Due to its complex pathophysiological process, the response rate of conventional glucocorticoids combined with immunosuppressants is less than 50%. Second-line therapy should be given for patients with glucocorticoid-resistant cGVHD. Nevertheless, no consensus has been reached on current second-line therapy and the therapeutic effect is relatively poor. Mesenchymal stem cell (MSC) is one of the most common adult stem cells. Due to multi-dimensional and multi-target immune regulating function, MSC has been widely applied in the prevention and treatment of cGVHD. In addition, accumulated studies have confirmed the safety and efficacy of MSC in the treatment of cGVHD, which is expected to become a novel strategy for the prevention and management of cGVHD. In this article, research progress, mechanism and existing problems of prevention and treatment of cGVHD by MSC were reviewed, aiming to provide novel ideas for optimizing therapeutic regimens of MSC and enhancing the prevention and treatment effect of cGVHD in subsequent research.

19.
Acta Pharmaceutica Sinica B ; (6): 618-631, 2023.
Article in English | WPRIM | ID: wpr-971731

ABSTRACT

The mammalian carboxylesterase 1 (Ces1/CES1) family comprises several enzymes that hydrolyze many xenobiotic chemicals and endogenous lipids. To investigate the pharmacological and physiological roles of Ces1/CES1, we generated Ces1 cluster knockout (Ces1 -/- ) mice, and a hepatic human CES1 transgenic model in the Ces1 -/- background (TgCES1). Ces1 -/- mice displayed profoundly decreased conversion of the anticancer prodrug irinotecan to SN-38 in plasma and tissues. TgCES1 mice exhibited enhanced metabolism of irinotecan to SN-38 in liver and kidney. Ces1 and hCES1 activity increased irinotecan toxicity, likely by enhancing the formation of pharmacodynamically active SN-38. Ces1 -/- mice also showed markedly increased capecitabine plasma exposure, which was moderately decreased in TgCES1 mice. Ces1 -/- mice were overweight with increased adipose tissue, white adipose tissue inflammation (in males), a higher lipid load in brown adipose tissue, and impaired blood glucose tolerance (in males). These phenotypes were mostly reversed in TgCES1 mice. TgCES1 mice displayed increased triglyceride secretion from liver to plasma, together with higher triglyceride levels in the male liver. These results indicate that the carboxylesterase 1 family plays essential roles in drug and lipid metabolism and detoxification. Ces1 -/- and TgCES1 mice will provide excellent tools for further study of the in vivo functions of Ces1/CES1 enzymes.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 272-282, 2023.
Article in Chinese | WPRIM | ID: wpr-953949

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with complex and diverse pathogenesis, and there is no effective treatment or specific drugs for its clinical treatment. In recent years, its incidence has been on the rise, and it has become the earnest expectation of medical researchers in China and abroad that related patients could be treated. AMP-activated protein kinase (AMPK) functions to regulate cellular energy homeostasis and mitochondrial homeostasis. When activated, it has a good intervention effect on NAFLD progression with lipid metabolism disorders and mitochondrial homeostasis disorders. For NAFLD, the activation of AMPK can inhibit the production of new lipogenesis in the liver, promote the oxidation of fatty acids in the liver, and enhance the mitochondrial function of adipose tissues. As a key target of metabolic diseases, AMPK can also improve apoptosis, liver fibrosis, autophagy, and inflammation. Traditional Chinese medicine (TCM) is good at treating diseases from multiple targets and multiple pathways and is also commonly used in the treatment of chronic liver disease in clinical practice. A large number of in vitro and in vivo experimental studies on NAFLD have shown that TCM monomers have good prospects for the treatment of NAFLD through the AMPK signaling pathway, including glycosides, phenols, alkaloids, flavonoids, quinones, terpenoids, and lignans, which are natural activators of AMPK. This study reviewed the research progress on TCM monomers in regulating the AMPK pathway to prevent and treat NAFLD, providing a broader perspective for TCM treatment of NAFLD.

SELECTION OF CITATIONS
SEARCH DETAIL